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ABSTRACT

A two-stage retrieval technique is presented for deriving water vapor profiles from data provided by a Raman
lidar, a microwave radiometer, a radio acoustic sounding system, and surface in situ instruments. In the first
stage, a Kalman filtering algorithm is applied to derive water vapor profiles using surface in situ and current
and past Raman measurements. In the second stage, a statistical inversion technique is applied to combine the
Kalman retrieval with radiometric and climatological data. This retrieval method is tested using data collected
during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment II experiment.
The method is demonstrated to provide accurate profiles at altitudes above which the Raman lidar technique is
limited.

1. Introduction

In ground-based remote sensing of atmospheric water
vapor, Raman lidars and microwave radiometers have
been used in routine operations and field investigations.
Microwave radiometers have been primarily used to
measure integrated water vapor and cloud liquid. The
most significant advantage in microwave radiometry is
the capability to measure water vapor and liquid water
in almost all nonprecipitating weather conditions. The
ability to profile water vapor by microwave radiometers
has also been investigated theoretically and experimen-
tally (Decker et al. 1978; Skoog et al. 1982; Ruf and
Swift 1988). Because of insufficient profile structure
information in the measurements themselves, retrieving
accurate profiles requires application of constraints. Ra-
man lidars have the capability to profile water vapor up
to 7 km or higher with vertical resolutions of better than
100 m (Melfi and Whiteman 1985; Melfi et al. 1989)
in cloud-free and nighttime environments. Under cloudy
conditions, the lidar beams are attenuated by clouds and
usually cannot probe through liquid clouds. During day-
time conditions, contaminations by sunlight limit lidar
measurements to the lowest 3 or 4 km. Because of the
desire to have continuous measurements of water vapor
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and because of the weaknesses inherent in each of these
remote sensing systems, large field experiments, such
as those at the Department of Energy’s (DOE’s) Cloud
And Radiation Testbed (CART) Central Facility in La-
mont, Oklahoma, will deploy routinely both radiometers
and Raman lidars, among with other remote sensing
systems.

An approach to increase our capability in water vapor
profiling is to combine pieces of information gathered
from various remote sensors. Such an approach has been
applied to radiometer-based temperature and water va-
por inversion (Westwater et al. 1983; Stankov et al.
1995; Han and Westwater 1995). These applications
showed that radiometric profile inversions could be sig-
nificantly improved by incorporating additional infor-
mation from other remote sensing instruments, especial-
ly active sensors. In this paper, we explore the feasibility
of profiling water vapor by integrating data from a Ra-
man lidar and a microwave radiometer, as well as a radio
acoustic sounding system (RASS) and surface in situ
instruments. The idea behind this investigation is that
the microwave radiometer’s ‘‘all-weather’’ measuring
capability may compensate the limitation of a Raman
lidar during cloudy and daytime conditions and the Ra-
man lidar’s fine vertical resolution may compensate the
coarse vertical resolutions of a microwave radiometer.
A two-stage retrieval algorithm is developed to combine
the pieces of information from these sensors. In the first
stage, a Kalman filtering technique is applied to lidar
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data alone that incorporates current and past measure-
ments. In the second stage, a statistical inversion method
is applied to combine lidar and radiometer measure-
ments using a priori climatological data. We discuss in
section 5 our reasons for developing our two-stage re-
trieval technique. The data collected in November and
December 1991 in Coffeyville, Kansas, during the cli-
mate experiment First ISCCP (International Satellite
Cloud Climatology Project) Regional Experiment II are
used for a test of the technique.

2. Instrumentation

During the FIRE II experiment, a substantial number
of remote sensors and in situ instruments were operated
together. The instruments included here have been de-
scribed in detail in Han et al. 1994. Here we discuss
the aspects that are relevant to this paper.

a. NOAA transportable three-channel microwave
radiometer

The NOAA transportable radiometer measures at-
mospheric radiation at microwave frequencies in units
of brightness temperature as a function of elevation an-
gle. The system contains three independent Dicke-type
radiometers, operated at 20.6, 31.65, and 90.0 GHz. All
three channels respond to water vapor and cloud liquid.
The 20.6 GHz channel is sensitive primarily to water
vapor, the 31.65 GHz channel is sensitive primarily to
liquid water, and the 90.0 GHz channel is sensitive to
both vapor and liquid. All three channels have the same
beamwidth of 2.58. Because of anticipated applications
at the Department of Energy’s CART site, where only
two channel systems are in use, only the two lower-
frequency channels were used here. Although, the sys-
tem is scannable in both elevation and zenith, our ob-
servations were in the zenith direction only. Although
the minimum temporal resolution is 30 s, a 2-min res-
olution is adopted here. The absolute calibration of the
brightness temperature measurements was done by the
so-called tipping curve procedure (Decker and Schroe-
der 1991). For the FIRE II experiment, 11 separate tip
calibrations were performed throughout the 2-month ex-
periment. The absolute accuracy of the two lower-fre-
quency channels is estimated as 60.5 K at 20.6 GHz
and 60.9 K at 31.65 GHz with 99% confidence limits.
The corresponding rms values for the sensitivities, at
2-min averaging time, are 0.03 and 0.02 K, respectively.

The primary derived products of the radiometer are
the column-integrated water vapor and liquid water in
clouds. In our previous investigation of water vapor and
liquid water during the FIRE II experiment (Han et al.
1994), a statistical inversion method was applied to data
from all three channels, and the inversion was condi-
tioned as ‘‘cloud-free.’’ Here a physical inversion meth-
od is applied (see section 3), which includes the two

lower-frequency channels only for both clear and cloudy
conditions.

b. Raman lidar

The NASA Goddard Space Flight Center Raman wa-
ter vapor lidar (Whiteman et al. 1992; Ferrare et al.
1992) uses a XeF laser to transmit light at a wavelength
of 351 nm. It receives the backscattered signals from a
variety of sources, including aerosol and molecular
backscattered light at the laser wavelengths as well as
Raman scattered light from water vapor (403 nm), ni-
trogen (383 nm), and oxygen (372 nm) molecules. In
normal operation, data from more than 23 000 pulses
are recorded as 1-min profiles with a range resolution
of 75 m. Profiles of water vapor mixing ratios are com-
puted from the ratio of the Raman water vapor to Raman
nitrogen return signals. During the FIRE II experiment,
the profiles were calibrated by using coincident and col-
located radiosonde measurements. Assuming Poisson
statistics, the standard error associated with the lidar
water vapor mixing ratio profiles is represented by the
square root of the total number of photon counts. In-
tercomparisons between Raman lidars, radiosondes, and
microwave radiometers have shown discrepancies gen-
erally less than 10% among these instruments (Melfi et
al. 1989; England et al. 1992; Han et al. 1994; Ferrare
et al. 1995). The maximum altitude of the lidar water
vapor retrievals under cloud-free conditions is generally
determined by the size of the random error, which, in
turn, depends on several instrumental and environmental
factors (Ferrare et al. 1995). Under nighttime clear sky
conditions, profiles up to at least 7 km can be accurately
measured. Under daytime conditions, because the mea-
surements are contaminated by background skylight,
only the low-altitude portions of water vapor mixing
ratio profiles may have significant signal-to-noise ratio.
Clouds rapidly attenuate the laser beam so that under
cloudy conditions water vapor profiling is generally con-
fined below clouds. The lowest range gate of the lidar
during this experiment was 185 m.

In addition to water vapor profiles, profiles of the ratio
of the total aerosol to molecular scattering are also mea-
sured. The cloud base altitudes, used here, are easily
identified from these profiles.

c. Other instruments

A 404.37-MHZ RASS and a set of surface meteo-
rological instruments were collocated with the micro-
wave radiometer and the Raman lidar. During the FIRE
II experiment, the RASS profile of virtual temperature
ranged from 350 m to an upper height that varied from
1 to 2 km. The associated temporal and vertical reso-
lutions were 15 min and 150 m. The upper range was
unusually limited due to problems with winds and radio
interference. The major characteristics and the perfor-
mance of this system were reported by Martner et al.
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(1993). The accuracy of the virtual temperature mea-
surements is generally considered to be better than 18C.

Conventional surface meteorological instruments
measured near-surface air temperature, humidity, and
pressure, with 2-min averaging time. The absolute ac-
curacies of these measurements are estimated as 0.58C,
5%, and 5 mb for temperature, relative humidity, and
pressure.

3. Retrieval algorithm

Excluding of conditions with precipitation, we con-
sider measurements under three different environments:
1) nighttime clear sky, when the water vapor mixing
ratio up to 7 km or higher is measured by the lidar; 2)
nighttime cloudy sky, when the lidar provides mea-
surements up to cloud base; and 3) daytime clear or
cloudy sky, when vapor mixing ratios within a few ki-
lometers above the surface are measured by the lidar.
The data, from which water vapor mixing profiles are
derived, consist of the measurements by Raman lidar of
water vapor mixing ratio profiles and cloud base heights,
surface temperature, pressure, and humidity from in situ
sensors, integrated water vapor (IWV) from the micro-
wave radiometer, and virtual temperature profiles from
RASS.

Let the desired water vapor profile x be an n(x) di-
mensional vector, x 5 [x1, x2, . . . , xn(x)]T. Its corre-
sponding vertical coordinate starts at the surface level.
The second level is set at the lidar’s first range gate.
The remaining levels have adjacent intervals of 75 m,
to be consistent with lidar’s range gates. The top level
is set at 10 km, a height above which the total amount
of water vapor is negligible and that is also above the
maximum usable Raman lidar range gate. Under con-
ditions when only a portion of water vapor profile is
directly measured, retrieval of x using the dataset de-
scribed earlier is an ill-posed mathematical problem, and
hence, additional information is required for such re-
trievals. In our retrieval algorithm, we introduce two
such sources. One is the information contained in past
lidar measurements and the other is statistical infor-
mation obtained from an a priori water vapor profile
ensemble. Our algorithm is a two-stage retrieval. In the
first stage, by using past and current surface in situ and
lidar measurements, a Kalman filter (KF) technique is
applied to derive an n(s) dimensional profile vector s
that has the same vertical coordinates as x but less range
coverage [n(s) # n(x)]. In the second stage, a statistical
inversion method is applied to derive the complete pro-
file x by combining the KF retrieval s with IWV mea-
surements and climatological data. In our original al-
gorithm design, only the first-stage was involved and
the statistical constraint was embedded in KF as an ini-
tial state. However, the statistical information faded
away with the temporal advance of KF. In some situa-
tions, a statistical constraint is crucial, and without it
large errors may be introduced in the retrievals. For

instance, this will occur when there are long periods
during which the Raman lidar is limited in height cov-
erage. The two-stage retrieval algorithm always bal-
ances the retrievals among the following three data com-
ponents: current measurements, past measurements, and
a priori climatological data. The algorithm is described
in the following section.

a. Kalman filtering

Applications of KF to derive atmospheric variables
have been reported by Ledsham and Staelin (1978) and
Wang et al. (1983) for space-based remote sensing and
by Basili et al. (1981) for ground-based sensing. A gen-
eral description of this technique is given by Gelb
(1988). In discrete KF, a state vector si of dimension
n(si) describes the state of a system at time step i. A
measurement vector zi of dimension n(zi) contains mea-
surements for the system. From zj at all previous time
increments (j 5 0, 1, . . . , i), KF estimates si. The merit
of this technique is that the estimation uses not only
current measurements but also a history of measure-
ments. In our application, zi contains water vapor mixing
ratio measurements from the surface to the maximum
height of the lidar profile, which varies depending on
the lidar’s noise level and environmental conditions.
Thus, the dimension n(zi) depends on time i. In our
system, si and zj use the same vertical coordinates and
dimensions n(si) $ n(zj) for j 5 0, 1, . . . , i. The di-
mension n(si) is determined according to the following
situations. In the first, the maximum height of current
lidar measurements is lower than or equal to that of the
maximum of previous measurements; n(si) remains un-
changed. In the second, the maximum height of the
current measurement is greater than the previous max-
imum; n(si) is then reset to be equal to the dimension
n(zi) of the current measurement vector. In the first sit-
uation, a portion of si is not directly measured by the
current observation but predicted by KF. Here, the KF
is designed mainly for this situation. When the second
situation occurs, KF is reinitialized and past measure-
ments are discarded because current measurements have
larger range coverage and sufficient accuracy.

The measurement vector zi is linearly related to the
state vector si as

zi 5 Hisi 1 ei, (1)

where Hi is the so-called observation matrix of dimen-
sion n(zi) 3 n(si), ei is the measurement error vector
with a covariance C(ei), and the subscript i refers to
discrete time. For our case, the matrix Hi has diagonal
elements equal to 1 and off-diagonal elements equal to
zero. In cases when n(zi) is smaller than n(si), the ele-
ments of the last n(si) 2 n(zi) columns in Hi are set to
zero. The first element in ei is the error of surface water
vapor mixing ratio and is estimated from the errors in
the measurements of surface temperature, pressure, and
relative humidity. The remaining elements in ei are the
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FIG. 1. Comparison of transition errors computed using a 3-h ra-
diosonde database (solid line) and a set of lidar data with a 2-min
temporal resolution (dashed line).

Raman lidar measurement errors, which are related to
the statistics of Raman water vapor return signals and
given with each lidar vapor mixing ratio profile. In the
error covariance C(ei), we assume that the off-diagonal
elements are zero, which is equivalent to the assumption
that the errors are uncorrelated with each other.

In the KF technique, the state vector si evolves ac-
cording to a known model with known statistical char-
acteristics of model uncertainties. The evolution model
is assumed to be a first-order Markovian process,

si 5 fi21si21 1 wi21, (2)

where the fi21 is the transition matrix and wi21 is the
transition error vector, assumed a zero mean white
Gaussian process, independent of si, with a covariance
matrix C(wi21). This equation propagates a state vector
s from time i 2 1 to time i. In our system, the time
interval of the state transition is 2 min. Since the vari-
ation of the atmospheric water vapor in 2 min is usually
small in comparison with the estimated errors in the
retrievals, we approximate the transition by advancing
the state vector without modification, which is equiv-
alent to setting the transition matrix to unity. The tran-
sition errors may be estimated using a historic profile
database. The Raman lidar itself may provide part of
such a database if a large number of clear lidar mea-
surements are collected. For this experiment, however,
the set of nighttime clear lidar profiles collected during
the FIRE II experiment may not be statistically suffi-
cient. The database we used here is a collection of 3-h
radiosonde profiles from five observation stations at the
DOE CART site during the intensive observation period
(IOP) conducted in April and May 1995. Over 700 ra-
diosonde profiles were used for the error estimation.
Assuming that the transition errors are time invariant
and time uncorrelated, we estimated the errors by cal-
culating the mean-square difference between consecu-
tive 3-h profiles and then dividing the difference by the
number of 2-min intervals in the advanced time period.
In general, a certain temporal correlation between errors
is expected, causing the estimates of the transition errors
to differ from those that correctly account for these cor-
relations. As a comparison, we calculated transition er-
rors using data with 2-min resolution collected from 11
nighttime observations by the Raman lidar during the
FIRE II experiment. Figure 1 shows the square roots of
the diagonal elements in the transition error matrices
calculated as a function of height using the two sets of
data described above. Below 3 km, the transition errors
estimated from the set of 3-h radiosondes are larger than
those obtained from 2-min-interval lidar data. Above 5
km, the errors calculated from lidar data increase mono-
tonically with height due to the increasing lidar mea-
surement noise. The inconsistency of the two error pro-
files may be explained by the differences between the
statistical sampling of the two datasets. The lidar data
were clear nighttime measurements with 2-min temporal
resolution, and the radiosonde data were 3-h soundings

during both nighttime and daytime conditions at five
stations. Since both sets of transition errors have un-
certainties, it is preferable to use the radiosonde-derived
transition errors that have larger values than the lidar-
derived errors below 3 km. It will be clear later that
larger transition errors result in larger uncertainties from
the use of past measurements. This effectively gives
more weight to current measurements in the profile es-
timation. Existence of correlation is also inconsistent
with the assumption that the transition errors are white
noise. However, our testing results have shown that our
KF technique under this assumption works well for the
data we have examined.

Let ŝi(1) represent the estimate of the state vector at
time i and Pŝ,i(1) its error covariance matrix. We esti-
mate ŝi(1) and Pŝ,i(1) from the following procedure.
The estimate of the state vector at time i 2 1, ŝi21(1),
and its error covariance matrix Pŝ,i21(1) are propagated
to time i according to (2) as

ŝi(2) 5 fi21 ŝi21(1), (3)

and

TP (2) 5 f P (1)f 1 C (w). (4)ŝ,i i21 ŝ,i21 i21 i21

The ŝi(2) and Pŝ,i(2) are seen as an a priori estimate
of si and its error covariance matrix, respectively. On
the other hand, from the measurements we can obtain
another estimate of si, a minimum length solution ŝm,i

(Rodgers 1976; Strang 1988) of (1):

ŝm,i 5 (Hi )21zi,T TH Hi i (5)

with an inverse error covariance matrix

5 C21(ei)Hi.21 TP Hŝ i im
(6)

Using the inverse error covariance matrices as weights,
ŝi(2) and ŝm,i are combined to yield ŝi(1) as
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21 21 21 21 21ŝ (1) 5 [P (2) 1 P ] [P (2)ŝ (2) 1 P ŝ ],i ŝ,i ŝ ,i ŝ,i i ŝ ,i m,im m

(7)

with an error covariance matrix Pŝ,i(1) of

21 21 21P (1) 5 [P (2) 1 P ] . (8)ŝ,i ŝ,i ŝ ,im

In our computer code, instead of using (7) and (8) di-
rectly, equivalent equations (Gelb 1988) are used to im-
prove the computation time for inversions of matrices as

ŝi(1) 5 ŝi(2) 1Ki[zi 2 Hiŝi(2)], (9)

and

Pŝ,i(1) 5 (I 2 KiHi)Pŝ,i(2), (10)

where I is the unit matrix and Ki is the Kalman gain
matrix, calculated as

T T 21K 5 P (2)H [H P (2)H 1 C (e)] . (11)i ŝ,i i i ŝ,i i i

In addition, to ensure that the error covariance matrix
Pŝ,i(1) will be always positive definite, a square-root
technique is applied (Kaminski 1971).

The KF starts at an initial state vector and its error
covariance. We use the first arrival of the measurement
vector z0 and its error covariance as the initial state. The
dimension n(s) of the state vector s is set equal to the
dimension n(z0). Then, the KF operates on successive
measurement vectors until the arrival of a measurement
vector with a dimension larger than the one used. The
KF is reinitiated and the dimension of s is reset as dis-
cussed earlier. The newest estimate and its covariance
are used, on one hand, in the second stage of the retrieval
process described in the following, and, on the other
hand, in the next process of KF estimation.

b. Statistical inversion

In the second stage, the KF profile estimate ŝ(1) and
the IWV derived from the radiometer are combined to
form a new measurement vector g of dimension n(g) 5
n(s) 1 1. The IWV, along with integrated cloud liquid
(ICL), is derived by using a physical retrieval method
(Westwater 1978) as

¯ ¯k t 2 k tL,2 1 L,1 2IWV 5 , (12)¯ ¯ ¯ ¯k k 1 k kV,1 L,2 V,2 L,1

and

¯ ¯2k t 1 k tV,2 1 V,1 2ICL 5 , (13)¯ ¯ ¯ ¯k k 1 k kV,1 L,2 V,2 L,1

where V is the water vapor profile weighted average ofk̄
the water vapor absorption coefficient; is the liquidk̄L

water profile weighted average of cloud coefficients; t
is total optical depth of water vapor and cloud liquid;
and ‘‘1’’ and ‘‘2’’ refer to the lower- and upper-fre-
quency channels, respectively. The optical depth t is
derived from the radiometric brightness temperatures Tb,

T 2 Tmr bbt 5 ln 2 t , (14)d1 2T 2 Tmr b

where Tmr is the mean radiating temperature, Tbb is the
big bang cosmic background with a value of 2.75 K,
and td is the dry air optical depth. The parameters, such
as , and Tmr, are calculated using a radiative transfer¯ ¯k , kV L

model from the data provided by our system. The model
inputs are pressure, temperature, water vapor, and cloud
liquid profiles. They are estimated from the following
procedure that is similar to that reported by Han and
Westwater (1995). The RASS virtual temperature and
lidar water vapor profiles are first statistically extrap-
olated from their maximum height to the top of the
atmosphere. The pressure profiles are then calculated
using the hydrostatic equation. Initially, a guess of ICL
is distributed moist-adiabatically with height. With these
initial profiles the model calculates the parameters in
(12)–(14). The quantities IWV and ICL are then re-
trieved from the brightness temperature measurements.
In an iterative process, the initial guess of ICL is re-
placed by the new derived ICL and a second run is
performed to derive IWV and ICL again. At each stage
of the iteration, cloud liquid profiles are assumed moist
adiabatic with cloud-base heights provided by the lidar.
The limiting factors in determining ICL are the accu-
racies in cloud liquid absorption coefficients and in
mean radiating temperatures. Han and Westwater (1995)
show that compared with the methods that use clima-
tological means to estimate the parameters in (12)–(14),
this iterative method significantly improves the accuracy
of ICL by reducing the uncertainties in deriving these
cloud absorption coefficients and mean radiating tem-
peratures.

The measurement vector g is related linearly to the
profile vector x by an n(g) 3 n(x) observation matrix
A as

g 5 Ax 1 eg, (15)

where eg is the error vector with an n(g) 3 n(g) co-
variance matrix C(eg). In A, the block of the first n(g)
2 1 rows has diagonal elements equal to 1 and off-
diagonal elements are equal to zero. The n(g)th row,
whose elements contain values of dry air density, relates
x to IWV. The dry air density profile is calculated from
the profiles used for the radiative transfer model dis-
cussed earlier. The n(g)th element in eg is the error that
combines the estimated error in IWV retrieval and the
error in converting water vapor mixing ratio profile to
IWV. In C(eg), the block of the first n(g) 2 1 rows is
Pŝ(1) and the last row has the n(g)th element equal to
the error of IWV and the remaining elements equal to
zero since we assume the error of IWV is uncorrelated
with the errors of ŝ(1).

From a climatological data ensemble of radiosondes
from Oklahoma City, Oklahoma, the closest National
Weather Service (NWS) radiosonde station to Coffey-
ville, we obtain an a priori estimate x̂r of the profile x,
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FIG. 2. Water vapor mixing ratio profile retrievals every half hour. Solid line—Raman lidar
measurements; dashed line—retrievals; dotted line—cloud-base height. Data were collected
during the FIRE II experiment.

FIG. 3. Time series of cloud-base height identified from aerosol
profiles measured by the lidar. Examples of water vapor profile re-
trievals during this period are shown in Fig. 2.

that is, the mean of the radiosonde ensemble and an
error covariance matrix P . An inverse covarianceof x̂x̂ rr

weighted average using an equation similar to (7) is
performed to combine the measurement vector and the
climatological data. The result is x̂, the final estimate
of the water vapor profile x.

In the nighttime clear-sky cases in which the lidar
covers the range close to the top of the retrieval vertical
coordinate, the estimate from KF usually yields a much
smaller error covariance Pŝ(1) in comparison with the
statistical covariance P . Hence, the averaging per-x̂r

formed in the second stage is in favor of Kalman, re-
sulting in an estimate differing little from that of KF.
In other cases in which the lidar measures only a portion
of a profile, for the same reason as that in the clear-sky
cases, the two-stage retrieval yields a profile with the
measured portion similar to the lidar measurements. The
other part of the retrieved profile is a result of a balance
among past and current measurements and climatolog-
ical data.

4. Experimental results
During the FIRE II experiment, the Raman lidar ob-

served the atmosphere only during night. There were a

total of 14 nights of observations, out of which there
were 4 nights when low-level clouds with cloud base
at about 2 or 3 km were observed. Unfortunately, during
the cloudy periods when the lidar operated, there were
no vapor profile observations by other instruments, such
as radiosondes. Therefore, a direct comparison of re-
trievals with ‘‘ground truth’’ is not available. In Fig. 2,
we show a 3-h time series of profile retrievals with a
half-hour separation; the retrieval is for the time indi-
cated on the plot. The lidar detected clouds right after
the first profile in the figure. The cloud base heights
gradually moved downward as shown in Fig. 3 and
caused the lidar range to decrease with time to a min-
imum of about 2.5 km at about 0300 UT. Our retrieval
technique recovered the full profiles by combining the
lidar data with the microwave and climatological data.
To compare the retrievals with known profiles, we trun-
cated lidar profiles during clear sky conditions at arti-
ficial cloud base heights created by extending existing
cloud base to clear periods and used the original lidar
soundings as ground truth. Figure 4a shows a retrieval
16 min after the start of the cloudy period. As antici-
pated, the retrieved profile below the cloud base resem-
bles the lidar measurement, and above the cloud base,
the influence of the previous lidar measurements is ob-
vious. Figure 4b shows an example in a situation when
there are no historic lidar measurements available above
cloud-base height. This situation is likely to happen
when clouds persist for a long period or in daytime.
The information for the profile above the cloud base is
supplied by the climatological data and integrated water
vapor, as well as the lidar measurement below the cloud
through the correlations characterized by the error co-
variance matrix. In general, under such conditions, the
portion above the lidar profile is smoothed. A suggestion
for improving the structure of retrievals is to incorporate
radiosonde measurements that are often available during



486 VOLUME 14J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 4. (a) An example of retrieval using the technique described in the text. Dash–dot line—retrieval; solid line—ground truth (from
lidar); dotted line—artificial cloud base. Data were collected during FIRE II. The cloud base is created by artificially extending existing
cloud base beyond clear periods. The lidar sounding is truncated at the artificial cloud base and used as cloudy measurements. The original
lidar sounding is used as ground truth. (b) An example of retrieval when lidar provides no historic measurements for the portion above the
cloud base. Same notation as in (a).

FIG. 5. Time series of estimated retrieval errors. Solid line—esti-
mated errors of the two-stage retrieval algorithm; dashed line—es-
timated errors of the Kalman performed at the first stage; dotted line—
uncertainties of the statistical constraint.

field experiments or from nearby NWS sites and use
them in the same way as the lidar measurements.

To see how the retrievals are balanced among current
measurements, previous measurements, and climatolog-
ical data, time series of estimated errors at selected lev-
els are calculated from data collected during FIRE II.
An artificial 11-h time series of cloud base heights at
1.2 km was generated and retrievals were performed.
Figure 5 shows the square roots of the diagonal elements
in the estimated error covariance matrices at 3 km as a
function of time. The dashed line shows the estimated
errors of KF retrievals, the dotted line the uncertainty
of the estimate x̂r from the climatological data, and the

solid line estimated errors of x̂. The time series start at
a retrieval under clear sky conditions and the remaining
retrievals are all under cloudy conditions. It is seen that
at the beginning, the error of x̂ at 3 km is small because
the lidar measurements covered that level. During the
cloudy period, water vapor at that level was not mea-
sured by the lidar. The influence of the past clear-sky
measurements on retrievals depends on the relative mag-
nitudes of the KF transition errors to magnitudes of the
uncertainties of the climatological data. The KF retrieval
errors grew with time and hence, relatively, the cli-
matological constraint plays an increasingly important
role in the second retrieval stage. At about 3 h after the
start of clouds, the KF retrieval error has the same mag-
nitude as the uncertainty of the climatological con-
straint. Thus, near the beginning of the cloudy period,
the profile structures above cloud bases are contributed
mainly by the lidar measurements and after several
hours mainly by the combined information due to the
climatological data, the IWV constraint, and the cor-
relation with the lidar-measured portion of the profile.
As a result, the estimated errors of x̂ remain almost
constant about 1 h after the start of clouds.

5. Discussion

Our method combines data from Raman lidar, micro-
wave radiometer, and other sources to derive water vapor
profiles under almost all nonprecipitating conditions. It
applies a two-stage retrieval algorithm to optimize the
use of information contained in past and current mea-
surements and climatological data. We made use of two
climatological databases. The first was a high temporal
resolution set of 3-h radiosondes that we used to estimate
errors associated with our assumptions about the KF tran-
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sition matrix. The second database was the more con-
ventional climatology associated with 12-h synoptic ra-
diosonde releases in central Oklahoma. The second set
provided retrieval coefficients for the radiometer data and
conditional constraints on water vapor profiles. Initially,
a single stage KF algorithm was used to combine both
radiometer and lidar data. However, it was quickly found
that when a single high-quality lidar sounding was avail-
able, all climatological constraints on the profile were
lost and subsequent retrievals could be degraded. This is
particularly troublesome when long periods exist when
only truncated Raman data are available. To retain the a
priori constraints, we developed the two-stage method
that was presented in section 3.

We have shown that under nighttime clear sky con-
ditions, retrievals of water vapor profiles differ little
from lidar and surface in situ measurements. Under
cloudy conditions, the profiles below cloud bases are
retrieved mainly from the lidar and surface in situ data.
The profiles above the cloud bases are retrieved by bal-
ancing the past and current measurements and clima-
tological data. Thus, under cloudy conditions, the profile
vertical resolution below cloud bases is determined by
the lidar to be 75 m. The vertical resolution above cloud
bases is complicated. Near the beginning of cloudy pe-
riods, profile structure information is contributed mainly
by past clear-sky measurements. Applications of such
information are statistically valid but may cause retriev-
al errors in cases of rapidly changing environments and
nonstationary conditions. Several hours after the begin-
ning of cloudy periods, the profile structures are deter-
mined mainly by the statistical information and hence,
smoothed profile retrievals are expected. In all cases,
the profiles are constrained by the integrated water vapor
obtained from the microwave radiometer. In addition, a
modest extension of the KF technique would also in-
corporate radiosonde profiles into the retrievals.
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